A Comparative Study of Gender and Age Classification in Speech Signals
نویسنده
چکیده
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in applications dealing with images, it is still in its infancy in speech processing. Age classification, on the other hand, is also concerned as a useful tool in different applications, like issuing different permission levels for different aging groups. This paper concentrates on a comparative study of gender and age classification algorithms applied to speech signal. Experimental results are reported for the Danish Emotional Speech database (DES) and English Language Speech Database for Speaker Recognition (ELSDSR). The Bayes classifier using sequential floating forward selection (SFFS) for feature selection, probabilistic Neural Networks (PNNs), support vector machines (SVMs), the K nearest neighbor (K-NN) and Gaussian mixture model (GMM), as different classifiers, are empirically compared in order to determine the best classifier for gender and age classification when speech signal is processed. It is proven that gender classification can be performed with an accuracy of 95\% approximately using speech signal either from both genders or male and female separately. The accuracy for age classification is about 88%.
منابع مشابه
A Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملP65: Speech Recognition Based on Bbrain Signals by the Quantum Support Vector Machine for Inflammatory Patient ALS
People communicate with each other by exchanging verbal and visual expressions. However, paralyzed patients with various neurological diseases such as amyotrophic lateral sclerosis and cerebral ischemia have difficulties in daily communications because they cannot control their body voluntarily. In this context, brain-computer interface (BCI) has been studied as a tool of communication for thes...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملA survey on speech style of Qazvin’s women based on age and education
Language is a social factor connecting people together. There are different speech styles among individuals, this difference is due to the situation and the context they are in. The purpose of this paper is to study speech style of Qazvin’s women in different situations. The authors have sought to find answers to the following questions: What is the relationship between speech style and age a...
متن کاملApplication of Proper Nouns as Terms of Address in Russian Compared to their Persian Equivalents
This study delved into the application of proper nouns as terms of address in Russian and Persian. In other words, it examined the rules governing the application of terms of address expressed as the names of individuals in different speech situations in both languages. The comparative study of the cultural features of languages spoken by Russians and Iranians called for the investigation of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009